1Wuhan University
2The University of Hong Kong
3University of Oxford
4The Hong Kong Polytechnic University
5DiDi Chuxing
6Sun Yat-sen University
7Texas A&M University
*The first two authors contribute equally.
†Corresponding authors.
We present RoReg, a novel point cloud registration framework that fully exploits oriented descriptors and estimated local rotations in the whole registration pipeline. Previous methods mainly focus on extracting rotation-invariant descriptors for registration but unanimously neglect the orientations of descriptors. In this paper, we show that the oriented descriptors and the estimated local rotations are very useful in the whole registration pipeline, including feature description, feature detection, feature matching, and transformation estimation. Consequently, we design a novel oriented descriptor RoReg-Desc and apply RoReg-Desc to estimate the local rotations. Such estimated local rotations enable us to develop a rotation-guided detector, a rotation coherence matcher, and a one-shot-estimation RANSAC, all of which greatly improve the registration performance. Extensive experiments demonstrate that RoReg achieves state-of-the-art performance on the widely-used 3DMatch and 3DLoMatch datasets, and also generalizes well to the outdoor ETH dataset. In particular, we also provide in-depth analysis on each component of RoReg, validating the improvements brought by oriented descriptors and the estimated local rotations.
@inproceedings{wang2022you,
title={You only hypothesize once: Point cloud registration with rotation-equivariant descriptors},
author={Wang, Haiping and Liu, Yuan and Dong, Zhen and Wang, Wenping},
booktitle={Proceedings of the 30th ACM International Conference on Multimedia},
pages={1630--1641},
year={2022}
@ARTICLE{wang2023roreg,
author={Wang, Haiping and Liu, Yuan and Hu, Qingyong and Wang, Bing and Chen, Jianguo and Dong, Zhen and Guo, Yulan and Wang, Wenping and Yang, Bisheng},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={RoReg: Pairwise Point Cloud Registration with Oriented Descriptors and Local Rotations},
year={2023},
volume={},
number={},
pages={1-18},
doi={10.1109/TPAMI.2023.3244951}}
}
Welcome to take a look at the homepage of our research group WHU-USI3DV ! We focus on 3D Computer Vision, particularly including 3D reconstruction, scene understanding, point cloud processing as well as their applications in intelligent transportation system, digital twin cities, urban sustainable development, and robotics.